Übung – ganzrationale Funktionen

	Schreibe die Funktion mit +-Zeichen								
1.	auf: $f(x) = \sum_{i=1}^{3} ix^{i}$ (i \in N)	f(x)=	+ +	+					
	i=0 Schreibe die Funktion mit +-Zeichen 6								
2.	auf: $f(x) = \sum_{i=3}^{6} (2i-1)x^{i-2}$ (ieN)	f(x)= 5	x +						
3.	Schreibe eine ganzrationale Funktion 4.Grades auf, bei der kein Koeffizient Null ist.								
4.	Schreibe eine ganzrationale Funktion 3.Grades auf, bei der das absolute Glied 1 ist.								
5.	Schreibe eine ganzrationale Funktion 3.Grades auf, bei der alle Koeffizienten negativ sind.								
6.	Schreibe eine ganzrationale Funktion 6.Grades auf, bei der die Koeffizienten der ungeraden Exponenten 0 sind.								
7.	Welche Symmetrieeigenschaft hat die Funktion von 6.) ?								
	Untersuche rechnerisch die Symmetrieeigenschaft von $g(x)=-3x^3-x-9$	***************************************							
8.									
9.	Notiere die Funktionsgleichung für eine gerade Funktion mit nur ungeraden Koeffizienten.								
10.	Notiere die Funktionsgleichung für eine zum Koordinatenursprung symmetrische Funktion 5.Grades.								
11.	Notiere die Funktionsgleichung für eine zur Ordinatenachse symmetrische Funktion 3.Grades.								
12.	Wie lautet die Funktionsgleichung: Jeder reellen Zahl wird ihr um 3 ver- mindertes Quadrat zugeordnet.								
13.	Wie lautet die Funktionsgleichung: Jeder ganzen Zahl wird die Hälfte der um 1 verminderten Differenz aus dem Quadrat der Zahl und der Zahl selbst zugeordnet.								
14.	Skizziere die Funktion von 13.) für - 3≤x≤3.				у	9			
	J_A_J.					-8			
						7			
						-6			
						-5			
						4		+	
						-3			
						-2			
						-1			
		-4	-3		-1		i	2	3 4
		-				1			
						-2			
]							

Skizziere die Graphen der Funktionen nur aus der Kenntnis der Nullstellen, des Verhaltens im Unendlichen und evtl. vorhandener Symmetrie:

$$f_1(x) := -\frac{1}{10} x^5 + \frac{1}{5} x^3 + 3 \cdot x$$

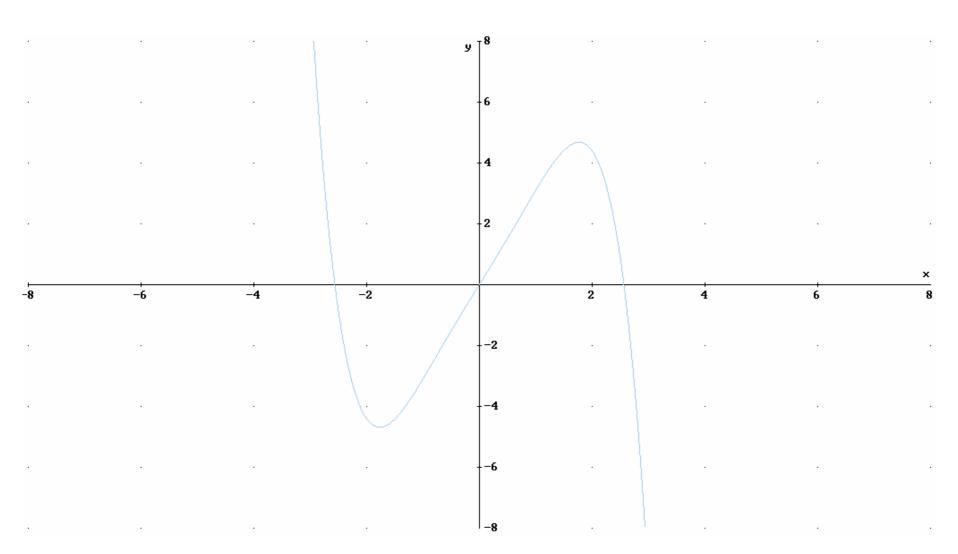
$$x_1 = -2.56$$
 $x_2 = 2.56$ $x_3 = 0$

$$f_2(x) := x^3 - 5 \cdot x + 3$$

 $x_1 = 1.83 x_2 = -2.49 x_3 = 0.66$

$$f_3(x) := -2 \cdot x^4 + 6 \cdot x^3 - 2 \cdot x^2 - 4 \cdot x$$

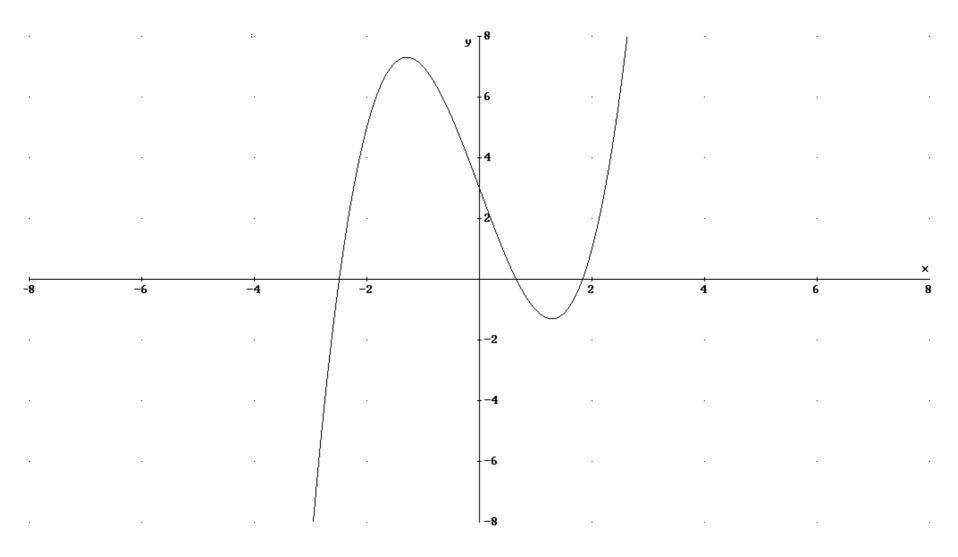
 $x_1 = -0.62 x_2 = 1.62 x_3 = 2 x_4 = 0$


$$f_4(x) := x^3 - 5 \cdot x^2 + x + 3$$

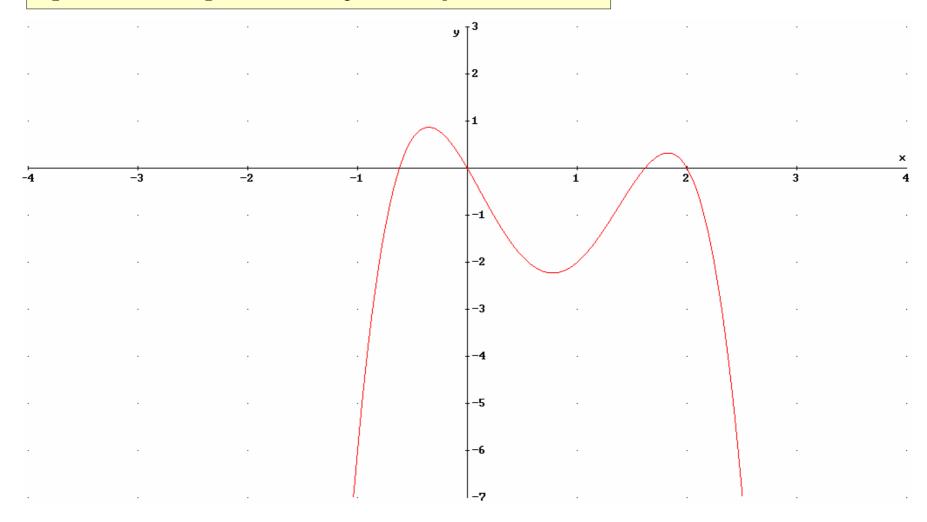
 $x_1 = 2 - 7$ $x_2 = 7 + 2$ $x_3 = 1$

$$f_5(x) := \frac{1}{5} x^6 + \frac{7 \cdot x^5}{2} - 19 \cdot x^4 - \frac{31 \cdot x^3}{2} + 48 \cdot x^2 - 18 \cdot x$$

$$x_1 = 0.5$$
 $x_2 = -1.87$ $x_3 = 0.97$ $x_4 = 4.59$ $x_5 = -21.69$ $x_6 = 0$

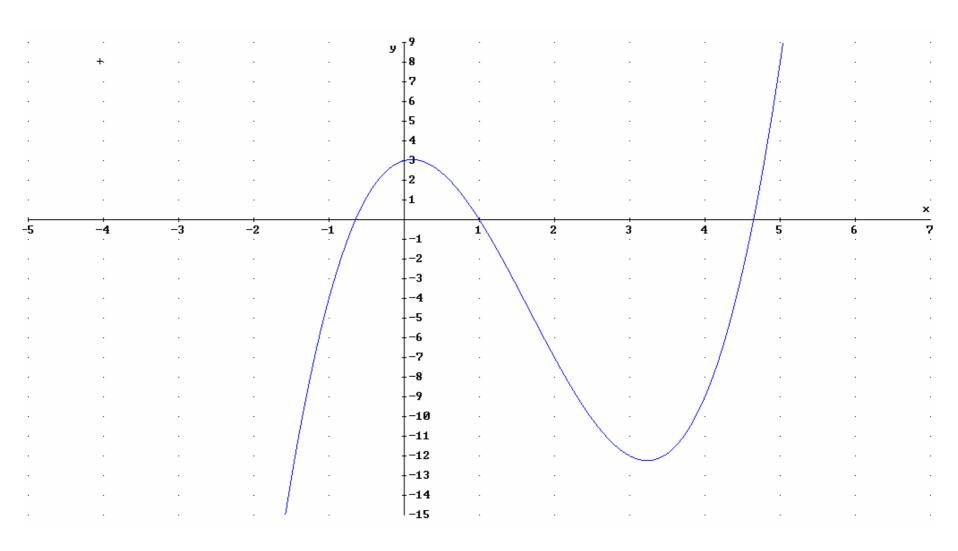

$$f_1(x) := -\frac{1}{10} x^5 + \frac{1}{5} x^3 + 3 \cdot x$$

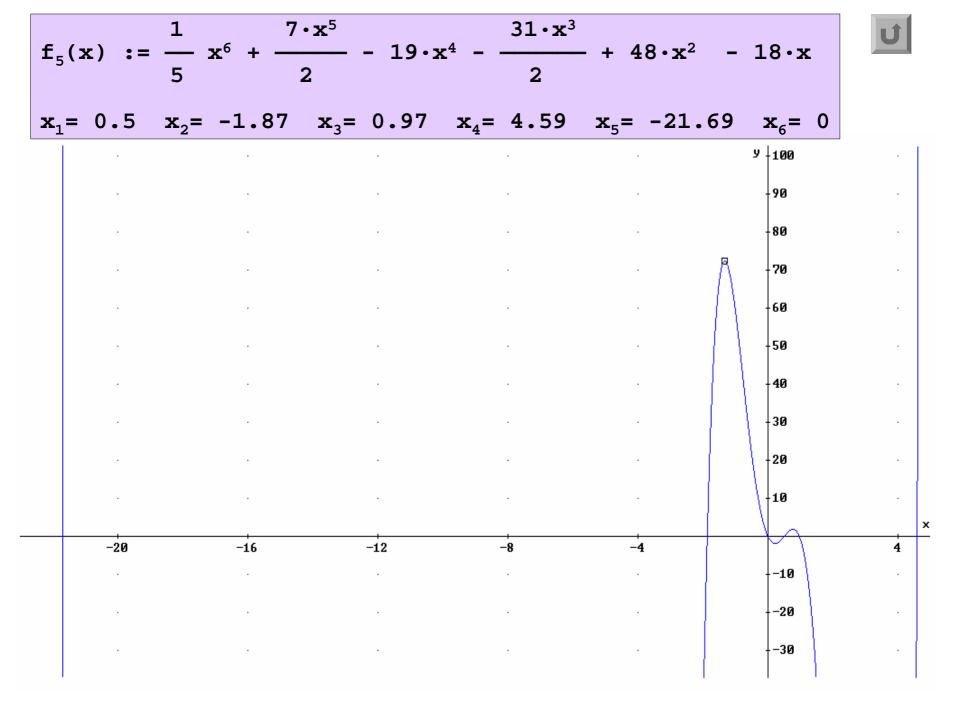
$$\mathbf{x}_1 = -2.56 \quad \mathbf{x}_2 = 2.56 \quad \mathbf{x}_3 = 0$$



$$f_2(x) := x^3 - 5 \cdot x + 3$$

 $x_1 = 1.83$ $x_2 = -2.49$ $x_3 = 0.66$



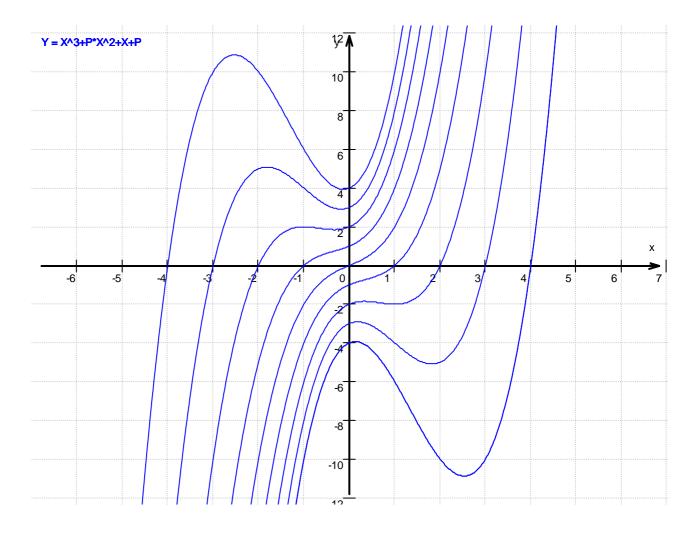

$$f_3(x) := -2 \cdot x^4 + 6 \cdot x^3 - 2 \cdot x^2 - 4 \cdot x$$

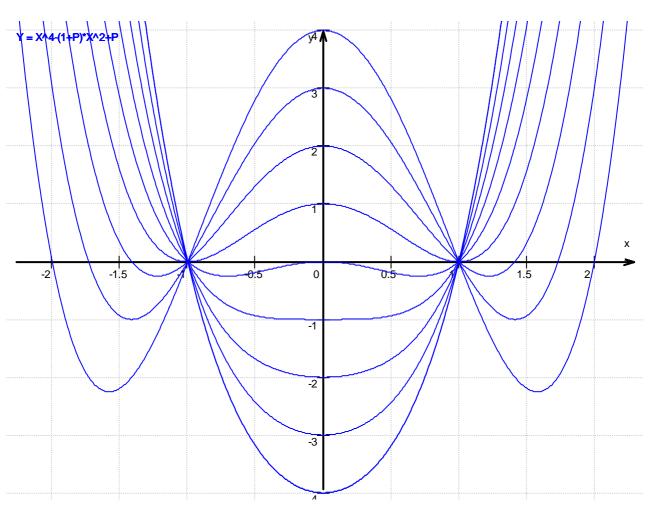
 $x_1 = -0.62$ $x_2 = 1.62$ $x_3 = 2$ $x_4 = 0$

$$f_4(x) := x^3 - 5 \cdot x^2 + x + 3$$

 $x_1 = 2 - 7$ $x_2 = 7 + 2$ $x_3 = 1$

ÜBUNG ZU GANZRATIONALEN FUNKTIONEN


Gegeben sei die Funktionenschar $f_p(x)=x^3+px^2+x+p$ (p)


- 1) Aufgaben für spezielle p
 - a) Berechne die Nullstellen für $f_1(x)$ und für $f_{-4}(x)$.
 - b) Skizziere die Graphen von $f_1(x)$ und $f_{-4}(x)$ in dasselbe Koordinatensystem.
 - c) Zeichne die Geraden g_1 : $g_1(x) = x + 1$ und g_{-4} : $g_{-4}(x) = x 4$ in das Koordinatensystem.
 - d) Berechne die Koordinaten der Schnittpunkte von $g_1(x)$ und $f_1(x)$ sowie die von $g_{-4}(x)$ und $f_{-4}(x)$.
- 2) Aufgaben für allgemeines p
 - a) Zeige, dass $f_p(x)$ nur bei x_0 =-p eine Nullstelle hat.
 - b) Berechne die Koordinaten der Schnittpunkte von $f_p(x)$ und $g_p(x) = x + p$.

HAUSAUFGABE ZU GANZRATIONALEN FUNKTIONEN

Gegeben sei die Funktionenschar $f_p(x) = x^4 - (p+1)x^2 + p (p)$.

- 1) Aufgaben für spezielle p
 - a) Berechne die Nullstellen für $f_2(x)$ und für $f_{-4}(x)$.
 - b) Skizziere die Graphen von $f_2(x)$ und $f_{-4}(x)$ in dasselbe Koordinatensystem.
 - c) Zeichne die Geraden q_1 : $q_2(x) = x^2 + 2$ und q_{-4} : $q_{-4}(x) = x^2 4$ in das Koordinatensystem.
 - d) Berechne die Koordinaten der Schnittpunkte von $g_2(x)$ und $f_2(x)$ sowie die von $g_{-4}(x)$ und $f_{-4}(x)$.
- 2) Aufgaben für allgemeines p
 - a) Berechne die Nullstellen für $f_p(x)$ und gib an für welche p
 - i) $f_p(x)$ vier reelle Nullstellen hat,
 - ii) $f_p(x)$ genau zwei reelle Nullstellen hat,
 - iii) $f_p(x)$ keine reellen Nullstellen hat und
 - iv) $f_p(x)$ genau eine reelle Nullstelle hat.
 - b) Berechne die Koordinaten der Schnittpunkte von $f_p(x)$ und $g_p(x) = x^2 + p$. Wie hängt die Anzahl der Schnittpunkte von p ab ?

